If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8.9(10^-7)=x^2/0.10-x
We move all terms to the left:
8.9(10^-7)-(x^2/0.10-x)=0
Domain of the equation: 0.10-x)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
-x)!=-0.10
x!=-0.10/1
x!=-0.10
x∈R
-(x^2/0.10-x)-7+8.9E=0
We get rid of parentheses
-x^2/0.10+x-7+8.9E=0
We multiply all the terms by the denominator
-x^2+x*0.10-7*0.10+(8.9E)*0.10=0
We add all the numbers together, and all the variables
-x^2+x*0.10-7*0.10+(24.192708273286)*0.10=0
We add all the numbers together, and all the variables
-1x^2+x*0.10+1.7192708273286=0
Wy multiply elements
-1x^2+0.1x+1.7192708273286=0
a = -1; b = 0.1; c = +1.7192708273286;
Δ = b2-4ac
Δ = 0.12-4·(-1)·1.7192708273286
Δ = 6.8870833093144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.1)-\sqrt{6.8870833093144}}{2*-1}=\frac{-0.1-\sqrt{6.8870833093144}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.1)+\sqrt{6.8870833093144}}{2*-1}=\frac{-0.1+\sqrt{6.8870833093144}}{-2} $
| 4x=-11+(-6x-9) | | z=(70-100)/15 | | 1/6+1/4=x | | (Y+10)x(Y+12)=3 | | (X+10)+(x+12)=3 | | (2+2w)4+9(w+3)=(2+2w)⋅4+9(w+3) | | -8+7=-4x-74 | | 5(m+1)+m=72 | | √5y-3=2 | | 6x+7=7x+0 | | 9-(6/x)=0 | | 3/x=25/100 | | -14=x-22 | | 26=6(5-w) | | (252/3)x-98=423 | | X+(3x+8)=72 | | (3.50)/(308)=(7.00)/(x) | | -5/6x-7/30+1/5=-52 | | 15=20t-4.9t^2 | | n+-23=2 | | 15=20t-4.9^2 | | 5(4)^x=25 | | -1=4/5x+2 | | 180-3x+5=x-5 | | -25x=-38-2x | | 260=25x+110 | | -28=x+9 | | 8x+48=116 | | 5(4k-1)-2(5k-5)=20(k+1) | | 1.6x^2-0.4x^2=0 | | -2-5x=-5-38-2x | | -8x+48=116 |